SYNTHESIS OF NONRACEMIC y-ALKOXY ALLYLSTANNANES BY STEREOSPECIFIC ANTI [1,3]-STANNYL MIGRATION

James A. Marshall* and Wei Yi Gung Department of Chemistry, University of South Carolina Columbia, South Carolina 29208

Summary: The y-alkoxy allylstannane 5b, prepared in high yield by $BF_3 \cdot OEt_2$ promoted [1,3] rearrangement of the (S)-a-alkoxy allylstannane 4b, affords the syn 1,2-diol derivatives 8 and 9 in high yield and excellent ee upon condensation with various aldehydes.

In the course of studies directed toward the synthesis of macrocyclic and medium-ring natural products, we subjected the racemic allylstannane aldehyde I to $BF_3 \cdot OEt_2$ in CH_2Cl_2 at -78°C. The cyclododecadienol III, a single diastereoisomer, was isolated in 70% yield along with a small amount of the isomerized allylstannane II. None of the cyclodecadienol derived from S_E' cyclization of I was formed.² Subsequently, we found that the (R)-a-alkoxy allylstannane I afforded the (S,R) product III with essentially complete chirality transfer. These findings suggest that I isomerizes to II stereospecifically en route to III. In order to clarify the course and scope of this reaction sequence we undertook the studies described herein.

(a) $BF_3 \bullet OEt_2$, CH_2Cl_2 , -78°C, 0.001 M

Sequential addition of Bu_3SnLi to unsaturated aldehydes 1a-1c and oxidation of the resultant unstable alcohols with ADD4 afforded the stannyl ketones $2a \cdot 2c \cdot 5$ These ketones were conveniently reduced with the LiAlH₄-Darvon alcohol (Chirald[®]) complex to the (R)-alcohols *ent*-3a-*ent*-3c of greater than 60% ee.⁶ Reduction of ketone 2b with the experimentally more capricious (R)-BINAL-H reagent afforded the (S)-alcohol 3b with greater than 95% ee under carefully controlled conditions (Table I).⁷

		% ee		% yield			
R	series	3	ent-3	4	5	ent-4	ent-5
Me	a		60			62	75
n-Bu	Ь	>95	62	65	80	64	81
C_6H_{11}	с		61			65	80

Table I. Isomerization of a-Alkoxy Allylstannanes

The configurational assignments for these alcohols were based upon distinctive chemical shift differences of the vinylic protons of the (R)-O-methyl mandelates 6 and 7 (Table II).^{8,5}

The benzyloxymethyl (BOM) ether derivatives 4b and ent-4a-4c readily isomerized to 5b and ent-5a-5c upon treatment with $BF_3 \bullet OEt_2$ in CH_2Cl_2 at -78°C for 1-3 h.⁹ The double bond geometry of 5 was assigned from the characteristic coupling constants (J ~6 Hz) of the vinylic protons. The absolute configuration of these allylstannanes can be tentatively assigned from the transformations described below pending rigorous proof. As expected, 5b and ent-5b showed opposite and roughly equal rotations after correcting for ee.

Table II. Vinyl Proton Shifts for (R)-O-Methyl Mandelates

Allylstannane 5b underwent facile addition to representative aldehydes affording the syn diol derivatives 8 and 9 as major products along with a small amount of the anti products 10 (Table III).¹⁰ Both 8 and 9 were formed with virtually complete transfer of chirality according to ¹H NMR analysis of the O-methyl mandelate derivatives. These derivatives could also be used to assign the absolute configuration to 8 and 9.8,⁵

Bu (5) Bu ₃ Sn OB(5b (>95% ee)	RC BF ₃	$\frac{HO}{OEt_2} \xrightarrow{Bu} \xrightarrow{(R)} \stackrel{OH}{\stackrel{(R)}{(R)}{\stackrel{(R)}{(R)$			Bu OR' 10		
		8		99		10 ^a	
R	series	% yield ^b	ee ^c	% yield ^b	ee ^c	% yield ^b	syn/anti
n-C6H13	Α	58	>95	20	>95	12	87:13
BuC = C	В	6 5	>95	7	>95	12	86:14
(E)-BuCH = CH	С	61	>95	26	>95	3	97:3
C_6H_{11}	D	62	>95	10	>95	3	96:4
Ph	Е	52	>95	20	>95	13	85:15

Table III. Addition of y-Alkoxy Allylstannane 5b to Aldehydes

^a ee not determined; ^b isolated yield not optimized; ^c 1H NMR analysis of Omethyl mandelate

The relative stereochemistry of the mono protected syn diol 8C was confirmed by reductive cleavage to the optically active diol 9C (eq. 1) of comparable rotation to material directly isolated from the allyl-stannane condensation.¹⁰ Control experiments indicated that diols 9A-9E were formed by cleavage of the BOM ethers 8A-8E in the condensation reaction.

BF₃-catalyzed additions of nonracemic a-alkoxy allylstannanes 4 to aldehydes have been shown to proceed by an anti S_E' pathway ($A \rightarrow IV$).² Assuming y-alkoxy allylstannanes follow an analogous pathway, the observed (R,R) products 8 and 9 must arise from the (S)-allylstannane 5b as in $B \rightarrow 8$. Accordingly, the isomerization of allylstannanes 4 and *ent*-4 to 5 and *ent*-5 must involve an antarafacial or anti S_E' pathway.³

Figure 1. Pathways for BF3-catalyzed additions of allylstannanes to aldehydes

As additional support for the assigned configuration of the y-alkoxy allylstannanes 5, we carried out a thermal addition of ent-5b to benzaldehyde. Such additions have been shown to proceed in a syn SE' manner through a chair-like transition state.¹¹ Consistent with the assigned configuration, ent-5b afforded an 80:20 mixture of 10E and 8E (eq. 2). These same two products were formed in the BF_{3} catalyzed addition of 5b to benzaldehyde (eq. 3).

The ready accessibility of chiral nonracemic y-alkoxy allylstannanes as exemplified in Table I and the high degree of stereoselectivity exhibited in their addition to aldehydes¹⁰ should be of considerable value for the asymmetric synthesis of polyol systems.

Acknowledgements. Support from the National Institutes of Health through research grant 2 RO1 GM29475, National Institute of General Medical Sciences, is gratefully acknowledged.

References and Notes

- Marshall, J. A.; Gung, W. Y. Tetrahedron Lett. 1989, 30, in press. Marshall, J. A.; Gung, W. Y. Tetrahedron 1989, 45, in press. 1.
- 2.
- 3. An anti pathway is predicted for synchronous SE2' displacements. Ahn, N. T. J. Chem. Soc., Chem. Commun. 1968, 1089.
- 4. ADD = azodicarbonyl dipiperidide. Narasaka, K.; Morikawa, A.; Saigo, K.; Mukaiyama, T. Bull. Chem. Soc. Japan 1977, 50, 2773. Marshall, J. A.; Gung, W. Y. Tetrahedron Lett. 1988, 29, 1657.
- 5.
- Yamaguchi, S.; Mosher, H. S.; Pohland, A. J. Am. Chem. Soc. 1972, 94, 9254. 6.
- 7. Noyori, R.; Tomino, I.; Tanimoto, Y.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6709. Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. Soc. 1984, 106, 6717. In the present work "BINAL-H" refers to the methoxy derivative.
- Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. D. J. Org. Chem. 1986, 51, 2370. For a mechanistic study of allylstannane 1,3-isomerization, see Denmark, S. E.; Wilson, T.; 8.
- 9. Willson, T. J. Am. Chem. Soc. 1988, 110, 984.
- 10. For previous applications of racemic y-alkoxy allylstannanes in synthesis, see Keck, G. E.; Abbott, D. E.; Wiley, M. R. Tetrahedron Lett. 1987, 28, 139. Koreeda, M.; Tanaka, Y. Tetrahedron Lett. 1987, 28, 143. Quintard, J.-P.; Elissondo, B.; Pereyre, M. J. Org. Chem. 1983, 48.1560.
- 11. Jephcote, V. J.; Pratt, A. J.; Thomas, E. J. J. Chem. Soc., Chem. Commun. 1984, 800. Hull, C.; Mortlock, S. V.; Thomas, E. J. Tetrahedron Lett. 1987, 28, 5343.

(Received in USA 3 February 1989)